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Abstract

The classical filtered historical simulation (FHS) offers a robust, non-parametric way to esti-
mate portfolio risk measures and is more and more frequently used by clearing houses to set
margin requirements. The simulation filters the variance of the past returns to the current
level, providing samples representative of the present market conditions. The FHS however
cannot filter changes in the correlation structure of the returns, which typically leads to an
underestimation of risk in volatile times, as correlation often increases during these periods.
Orthogonal-FHS offers a solution by applying the classical FHS framework to an orthogonal
transformation of the returns. We describe a generic framework for the Orthogonal-FHS and
show under which conditions it offers robust risk measures. Using a simultaneous diagonaliza-
tion algorithm we implement an Orthogonal-VaR and show its effectiveness on both simulated
and empirical data.

Keywords: Simultaneous Diagonalization, Filtered Historical Simulation, Margin
Requirements, Value-at-Risk, Non-Parametric Risk Measures

1. Introduction

Calculating robust portfolio risk measures is an essential task for a financial institution
to limit market risk exposure. By extracting the distributional properties of the future re-
turn of the portfolio given the information available, a maximal expected loss of the portfolio
given a confidence interval can be estimated and hedged accordingly. This process is essential
for central counterparty clearing houses (CCPs), which require accurate short-term deep tail
modeling to determine margin requirements for their clients’ portfolios.

A popular method to extract such distributional properties is based on the historical sim-
ulation of the portfolio over a certain lookback period, which defines a set of possible future
return scenarios. This method defines a non-parametric, data-driven approach to estimating
the risk measure. Since the historical scenarios do not always accurately represent current
market conditions, an approach is to transform (or filter) the scenarios to reflect a more rep-
resentative state. This is called a Filtered Historical Simulation (FHS) and has been show to
improve significantly the accuracy of the risk measures [12, 4, 3].

In the classical FHS, the historical returns are filtered by adjusting the variance of the
return to the estimated variance of the return in the current state. This filtering technique,
however, does not filter changes in the correlation structure of the assets. As a result, the
resulting risk measure estimations can be off when there is a significant temporal change in
the correlation structure of the assets contained in the historical simulation. Generally, market
risk will be underestimated as correlation increases, leading to significant potential losses for
CCPs, and overestimated as correlation drops off, leading to unnecessarily high margins.

To resolve this issue, Du and Nesmith [9] suggest the use of principal component analysis
(PCA) to transform the correlated returns to a set of uncorrelated (or orthogonal) factors and
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apply an FHS-type filtering on those factors. The resulting risk measures show significant im-
provement compared to the classical FHS estimated risk measure when computed on empirical
data, where a significant shift in the correlation structure was observed.

While the empirical result offers improvement, the temporal dependence in the data violates
the main assumptions of the principal component analysis, which assumes that the observations
are independent or at least serially uncorrelated [13]. As a result, the PCA decomposition can
only extract unconditional orthogonal components, which are not conditionally uncorrelated,
and the correlation filtering is not guaranteed to work as expected.

In this paper, we provide a theoretical framework of the simulation and show under what
conditions a successful filtering of historical simulations is achieved. We propose using simul-
taneous diagonalization to extract a set of conditional and unconditional uncorrelated factors
which are used to improve the filtering and the quality of the risk measures. The framework
has a relevant application for margin calculations for CCPs, which require accurate and com-
putationally tractable tail risk modeling to set initial margins as effectively as possible. While
we require the method to be computationally efficient, we do not aim at any compression
techniques to reduce the amount of risk factors.

1.1. Problem Setting

We consider a portfolio consisting of M assets of which we observe a matrix of historical
returns R = (r1, r2, . . . , rM )T , where each row vector contains N historical returns rm =
(rm,1, rm,2, . . . , rm,N ). The aim is to use the historical returns R to obtain a risk-measure
X := X (R) (VaR, Expected Shortfall, etc.), under the rationale that the historical returns
reflect some information about the distribution of the future returns rm,N+1 of the portfolio.
The classical filtered historical simulation estimates this distribution based on filtered scenarios,
where the filter rescales the returns to match the current variance. It is common practice to
estimate the conditional variance of each return rm using an exponentially weighted moving
average (EWMA) with parameter λ ∈ [0, 1]

σ2
m,n = (1− λ)r2m,n−1 + λσ2

m,n−1, (1.1)

and an appropriate seed σ2
m,0 > 0. The filtered historical returns R̃ are obtained by rescaling

each historical return by the current conditional variance σ2
m,N+1:

r̃m,n = rm,n
σm,N+1

σm,n
, (1.2)

Once the filtered historical returns are calculated, we aggregate the asset returns with the
portfolio weights w = (w1, w2, . . . , wM ) to obtain the filtered returns of the portfolio

r̃p = w · R̃ ∈ RN . (1.3)

The risk measure X is now obtained using the distributional properties of the filtered portfolio
returns. The α-VaR is defined as the (1−α) quantile of the distribution, while the α-expected
shortfall is defined as the expected value of all observation at-or-below the (1− α) quantile.

The filtering technique above assumes that the returns of the assets at time t are a random
vector r(t) = (r1(t), r2(t), . . . , rM (t)), where the variance of the returns Var(rm(tn)) = σ2

m,n

has a time-dependent component. In this case, the value r̃m,n is a sample of the random
variable r̃m(tn) = rm(tn)

σm,N

σm,n
, whose variance is given by Var(r̃m(tn)) = σ2

m,N . A major

drawback of this filtering technique is that it is applied on a univariate level. We observe that
in this case, the covariance of the filtered returns between two assets 1 ≤ k, l ≤ M is given by

cov(x̃k(tn), x̃l(tn)) =
σk,N

σk,n

σl,N

σl,n
cov(xk(tn), xl(tn)) = σk,Nσk,lρk,l(tn), (1.4)

where ρk,l(t) is the correlation coefficient between xk(t) and xl(t). This shows that the classical
FHS adjusts the variance of the returns to the current level but leaves the correlation coefficient
at ρk,l(t). Since the aggregated return of a portfolio depends on the variance as well as the
correlation between the individual returns, the risk measure estimation can be significantly
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impacted if the correlation ρk,l(t) changes over the lookback window, as the filtered scenarios
are not adjusted to reflect the latest correlation structure. This is aggravated by the empirical
fact that correlation generally increases during volatile periods [16], potentially overestimating
the portfolio netting benefits and underestimating the market risk during distressed markets.

There are multiple ways proposed to improve this issue. The simplest way is to consider a
classical univariate FHS on the historical returns of the portfolio rather than considering the
assets individually. We refer to this method as a Portfolio FHS. In this case, the correlation
between the assets is automatically included in the variance of the portfolio returns, and the
approach offers excellent results. A significant drawback of this approach is that the filtered
returns are no longer available for the individual assets but only for the aggregated portfolio.
This is not suitable for risk measures that depend on individual asset returns. For instance,
when calculating margin requirements for portfolios, CCPs are often required to include the
gross margin in the calculation[1], which is defined as the sum of the individual risk measures
on the instruments. Although the Portfolio FHS is not suitable for practical purposes, it offers
a benchmark for other multivariate approaches, as the risk measures of a well-performing
approach should be close to the Portfolio FHS.

Another intuitive approach is to extend the classical FHS to a multivariate FHS by filtering
the joint random vector rm on the covariance matrix rather than the variance of each asset
[10, 6]. Suppose that Σn is the conditional covariance matrix at tn, which is obtained through
a multivariate EWMA estimation. Similarly to the classical FHS, we obtain the multivariate
FHS by

r̃n = Σ
1/2
N Σ−1/2

n rn ∈ RM , (1.5)

where Σ
1/2
n is given by the Cholesky factorization of the covariance matrix Σn. The resulting

filtered returns thus not only reflect the latest variance of the returns but also their correlation

structure ΣN . The main drawback of the method is that it requires the calculation of Σ
1/2
N and

Σ
−1/2
n , which means that Σn needs to be positive definite and full-ranked for all n. Numerical

instabilities imply that the method is not always suitable for practical use.
Since the classical FHS correctly filters the variance, the classical FHS is equivalent to the

multivariate FHS if the correlation between the returns is 0 at all times. In other words, if rk(t)
and rl(t) are independent for any k ̸= l ≤ M , the classical FHS does not need any adjustment.
While it is clear that this is an unrealistic assumption, the idea of Du and Nesmith [9] is
to obtain a transformation W ∈ RM,M , such that Y = WR is a matrix of M uncorrelated
column-vectors. In this case, applying a classical FHS on Y yields a vector Ỹ , which can
then be transposed back using W−1 to obtain R̃ = W−1Ỹ . In their work, they define the
transformation W using a principle component analysis, which is why we refer to the approach
as PCA-FHS. In the PCA-FHS, the correlation between the factors rm is included in the
variance of the uncorrelated factors ym. The filtering of Y to obtain Ỹ thus includes the
filtering of the correlation to the current level, which greatly improves the results on both
historical and artificial data [9].

Although the PCA-FHS approach shows improved results compared to the classical FHS,
the principal component analysis ignores any temporal dependence between the returns. This
stems from the fact that the PCA assumes all returns to stem from the same distribution. The
resulting factors Y obtained through the PCA are thus unconditionally uncorrelated (across the
entire time series), but not necessarily conditionally uncorrelated [17]. This means that although
the covariance matrix of R will be diagonal, the conditional covariance matrix obtained through
the EWMA is most likely not diagonal, and the PCA-FHS will still underestimate risk when
correlation increases sharply.

1.2. Contributions

In this paper we analyse a simple stochastic framework for the filtered historical simula-
tion. We will show under what conditions orthogonal -type FHS are valid models to filter the
correlation structure in FHS and prove that a valid orthogonal simulation is achieved when
the conditional covariance matrix of the returns is diagonal for each time step. Under these
conditions, the orthogonal FHS is equivalent to the benchmark Portfolio FHS. Using an al-
gorithm of simultaneous diagonalization to extract a transformation W , we then introduce a
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novel Orthogonal-FHS framework called SD-FHS, such that the classical FHS is valid when
applied to the orthogonal vectors of Y = WR. Based on empirical and simulated data we
show that the model provides solid risk measures and has a potential for improved margin
requirements compared to the classical FHS and the PCA-FHS.

2. Model Description

2.1. Filtering Correlation

While asset returns are generally assumed to be temporally independent, it is well known
that the time series exhibit a phenomenon called volatility clustering [7], where the square
of the returns is temporally strongly correlated. For this reason it is common to utilize an
ARCH-type model for financial time series, as first indicated by Engle [11]. In this paper we
introduce a multivariate EWMA-type1 model for the asset returns, which is a specific case of
an autoregressive model. Suppose that a portfolio consists of M assets with relative portfolio
weights w = (w1, w2, . . . , wM ) and let r(t) = (r1(t), r2(t), . . . , rM (t)) denote the returns of the
assets at time t on a fixed grid t ∈ [0, 1, . . . ). We describe the (centered) returns of the asset
as a multivariate process

r(t) ∼ N(0,Σ(t))

Σ(t) = (1− λ)r(t− 1)rT (t− 1) + λΣ(t− 1) (2.1)

Σ(0) = Σ0,

where Σ(t) is the covariance matrix of the returns starting at Σ0 ∈ RM,M and λ ∈ [0, 1]
determining the reactivity of the variance of the process. The individual returns of the assets
and the portfolio weights form the return of the portfolio rp(t) at time t as an aggregation of
r(t). We denote the aggregation function as g(.):

rp(t) = g(r(t)) := w · r(t) =
M∑

m=1

wmrm(t). (2.2)

Since the portfolio returns are calculated as a sum of the individual returns, the variance of
rp(t) depends on both the variances of rm(t) as well as the correlation between the assets, as
we indicated in the introduction. The portfolio filtered historical simulation is then a sampling
procedure on the aggregated returns rp(t), which are univariate.

Definition 2.1 (Portfolio FHS). Let N ∈ N be a lookback window with lookback times t1, t2, . . . tN .
A Portfolio FHS is the sequence of random variables (r̃p(t1), r̃p(t2), . . . , r̃p(tN )), where

r̃p(tn) := rp(tn)
σp(tN )

σp(tn)
, (2.3)

and σp(t) is the volatility of rp(t).

As described earlier, the portfolio FHS acts as a benchmark for other FHS-type simulations
rather than a viable simulation since the simulations of the individual assets are required
for certain calculations. As the variance of rp(t) contains all the information on the latest
correlation structure, the portfolio FHS correctly filters the correlation structure of the returns.
The goal is to achieve a similar sampling framework such that the distribution of the samples
matches the portfolio FHS, while the individual asset samples of of the portfolio constituents
are still available. The classical FHS cannot achieve this due to the lack of correlation filtering.
However, if we first transform the return to a new set of factors which are uncorrelated, the
correlation structure is then packed into the variance of these factors, and a classical FHS will
then suffice to obtain proper filtering. This is called an orthogonal FHS. One requirement for
the orthogonal FHS is that the transformation exists.

1Note that the choice of autoregressive model is not specific. The theory expands to all types of processes.
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Definition 2.2. Let r(t) be defined as in Equation (2.4). We call r(t) orthogonal if there exists
a system of M components y(t) and a matrix W ∈ RM,M , such that

r(t) = Wy(t)

y(t) ∼ N(0,Λ(t))

Λ(t) = (1− λ)diag(y21(t− 1), y22(t− 1), . . . , y2M (t− 1)) + λΛ(t− 1) (2.4)

Λ(0) = Λ0,

and

Λ(t) =


σ2
1(t) 0 0 . . . 0
0 σ2

2(t) 0 . . . 0
. . .

0 . . . 0 . . . σ2
M (t)


is diagonal. In this case, the processes y(t) are independent EWMA-type processes. The pro-
cesses y(t) are called the orthogonal components of r(t).

The existence of independent factors driving asset returns is a common theme in the mod-
eling of asset returns and stochastic modeling in general. The setup offers a sound explanation
for changes in the correlation structure over time, as a strong increase or decrease in variance
of one of the factors changes the relative importance of the factor. If the independent factors
are found, all the correlation of the assets is thus contained in the variance of the factors, which
means that a classical FHS method to the components successfully filters the correlation. We
now prove that the resulting FHS is equivalent to the Portfolio FHS

Theorem 2.1. Let N ∈ N be a lookback window with lookback dates t1, t2, . . . tN and let r(t) be
an orthogonal system of returns with matrix W and orthogonal components y(t). The sequence
of random variables (g(r̃(t1)), g(r̃(t2)), . . . , g(r̃(tN )) with

r̃m(tn) = W · ym(tN )
σm(tN )

σm(tn)
, (2.5)

is equal in distribution to the Portfolio FHS. We call it the O(rthogonal)-FHS.

Proof. We derive the variance of the portfolio returns rp(t) for any time t conditional on all
the information until t− 1:

Var(rp(t)) = Var(g(Wy(t))) = Var(wWy(t)) = (wW )Λ2(t)(wW )T

The quantity r̃p(t) =
√

Var(rp(T ))
Var(rp(t)) rp(t) is thus a sum of independent standard normals with

variance
Var(rp(T ))
Var(rp(t))

Var(rp(t)) = (wW )Λ2(T )(wW )T

On the other hand, the variance of g(r̃(t)) is given by

Var(g(r̃(t))) = Var
(
wWΛ(T )Λ(t)−1y(t)

)
= wWΛ(T )Λ(t)−1Λ2(t)(wWΛ(T )Λ(t)−1)T

= wWΛ2(T )(wW )T

The quantities g(r̃(t)) and r̃p(t) are thus both normally distributed with mean 0 and vari-
ance wWΛ2(T )(wW )T , which means they are equal in probability.

Since the conditional probabilities for all t and in particular thus g(r̃(1))
d
= r̃p(1), it follows

from the total law of probability that g(r̃(t))
d
= r̃p(t) for all t. ■

The theorem implies that if the orthogonal components y(t) exist and can be identified, the
classical FHS procedure will yield the same portfolio risk measures as the index FHS.
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2.2. Simultaneous Diagonalization

In this section we introduce an algorithm to extract the orthogonal components y(t). The
algorithm is a general technique from linear algebra called simultaneous diagonalization (SD).
The resulting FHS framework will therefore be called SD-FHS. Simultaneous diagonalization
is an algorithm which aims to diagonalize as a set of matrices at the same time. Suppose that
Ai, i ≤ I is a set of square matrices of size M . The goal is to obtain an (orthogonal) matrix
C, such that

Bi = CAiC
T , i ≤ I (2.6)

is as diagonal as possible (i.e. the off-diagonal elements are as small as possible). We apply the
method to obtain the orthogonal components under the following rationale. Suppose that the
matrices Σ(t) = Var(r(t)) are the conditional covariance matrices of the asset returns. Since
the covariance matrix of the orthogonal components y(t) is diagonal, we have that

Λ(t) = Var(y(t)) = Var(W−1r(t)) = W−1Σ(t)W−1T , (2.7)

is a diagonal matrix for all t. Hence, applying SD to the observable matrices Σ(t) yields a
transformation C, which is exactly the desired transformation W−1. This means that the
samples for the orthogonal components yn, n ≤ N are found as

Y = C ·R (2.8)

For this paper we use the Jacobian Angles SD implementation, which is due to Cardoso and
Souloumiac [5]2. There are other viable approaches [14, 15, 2] which offer similar results.
The iterative algorithm rotates the elementary parts of the matrix piece-wise to achieve a
minimization of the squared sums of off-diagonal elements (OSS), defined as

OSS :=

N∑
n=1

off
(
C Σ(tn) C

T
)
, (2.9)

where
off (A) :=

∑
1≤i ̸=j≤M

|ai,j |2. (2.10)

We refer to the resulting FHS simulation as SD-FHS, a particular type of O-FHS.

3. Numerical Examples

3.1. Simulation Data - Correlation Switch

To show the effectiveness of the SD-FHS, we conduct numerical examples to backtest a
Value-at-Risk model based on the simulations and compare the results to the Portfolio-FHS
risk-measure. The backtesting procedure consists of running daily VaR calculations and es-
timating the VaR level based on the simulations. The VaR levels are then compared to the
observed next-day returns, of which we expect around 1 − α to “breach” the VaR level of α.
In the first example we consider a similar experiment as in [9], where we consider a portfolio
of M assets that are completely independent for a period, after which the correlation between
the samples jumps (close) to 1. In the first period, the independent period, the returns are
independently normally distributed with constant variances ranging from 20% to 30%. At the
end of the period, a switch in correlation happens as the dependent period starts. The returns
are now still normally distributed with the same volatility, but the correlation coefficient is
set to 1. To avoid numerical instabilities, we add a small amount of noise to the returns so
that the correlation matrix is not singular. Table 1 provides an overview of the settings used
to construct the backtesting data. After the creation of the initial data of returns R we test
the quality of the filtered simulations. We obtain the filtered matrix of returns R̃ for the

2A Python implementation of the algorithm can be found on Github thanks to Gabriel Dernbach [8].
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SD-FHS, PCA-FHS according to [9], and the classical FHS. Afterwards, we compute the 99%
Value-at-Risk measure on R̃, defined as the 1% quantile

X (R) = Q0.01(R̃) := [r̃p]⌊0.01·N⌋, (3.1)

where [r̃p] are the sorted filtered portfolio returns and ⌊.⌋ is the floor function. We compare
the obtained risk to the benchmark risk measure obtained through the Portfolio FHS. Table 2
shows an overview of the parameters for the backtesting.

Setting Value

Number of assets 5
Minimum Annualized Vol 20%
Maximum Annualized Vol 30%
Length Independent Period 300
Length Dependent Period 300
Total Length 600

Table 1: Overview simula-
tion parameters

Setting Value

VaR Level 99%
One-sided Left
Ewma Coefficient (λ) 95%
Lookback Period min(500,Avlb)

Table 2: Parameters of
VaR backtest

We show the results of the simulation in Figure 1. The first plot shows the daily portfolio
returns as well as the 99% VaR line at this date. Notably, both the PCA-FHS and SD-FHS
provide better results than the classical FHS in regards to the breach rates. This is expected
as the increased correlation is not captured in the classical simulation. However, the SD-FHS
reacts best to the switch in correlation. The second plot shows the average OSS as defined
in Equation (2.9) over the time. We see that after the correlation switch, there is a spike in
off-diagonal weight in the PCA-FHS, leading to a lower VaR estimation. The SD successfully
adapts to the regime switch in correlation.
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Figure 1: Comparing SD-FHS, PCA-FHS, and the classical FHS. The correlation switch
increases the overall portfolio risk, leading to higher VaR levels. The risk measure
calculated with SD-FHS tracks the Portfolio-FHS the closest.

We run the same experiment 50 times with different seeds and compute the average breach
rates. Section 3.1 shows the statistics of this experiment. The SD FHS is the closest to the
Portfolio FHS.

Method Portfolio FHS SD FHS PCA FHS Classical FHS

Mean 1.396% 1.579% 1.793% 3.261%
Standard Deviation 0.443% 0.414% 0.525% 0.436%

Table 3: Repeated simulation of 50 times yields the average break rate per FHS simu-
lation methods

In the second example of simulated data, we construct the opposite scenario to simulate a
sudden drop in correlation. For this experiment, we first simulate strongly correlated assets
over 300 days and combine the scenarios with 300 days of uncorrelated assets. The setup of
the experiment is thus the same as in Table 1, except that the dependent period precedes the
independent period. Figure 2 shows the 99% VaR results of the experiments.
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Figure 2: Comparing SD-FHS, PCA-FHS, and the classical FHS. As correlation drops,
the portfolio risk decreases significantly. The classical FHS and the PCA-FHS overesti-
mate the residual correlation risk, leading to unnecessarily high margin requirements.

As expected, the PCA-FHS and SD-FHS perform better than the classical FHS due to
the correlation filtering as they track the portfolio FHS closer. Additionally, the SD-FHS
outperforms the PCA-FHS as it tracks the benchmark VaR a lot closer. We conclude that in
case of a correlation drop, the SD-FHS leads to lower risk measures, which means that the
CCPs can set the margins lower than with the PCA-FHS.

3.2. Empirical Data - The Covid drawdown

In the second numerical experiment, we consider empirical data from the “Covid Crash” in
March of 2020. This backtesting window is a good example of a switch in correlation, as the
correlation spiked for a few weeks, returning to a regular level afterward. Figure 4 shows the
average correlation observed during the backtesting period using a 50-day rolling window.
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Figure 3: During the Covid crash, the average correlation spikes. Furthermore, we
identify two additional minor spikes in the period leading up to 2020.

We consider a portfolio consisting of 10 equally weighted equities, of which all are con-
stituents of the SP500. The constituent list is found in the Appendix A. We again consider a
VaR backtesting where the VaR is calculated using the 4 simulation methods as before. Table 4
shows an overview of the data.

Setting Value

Number of assets 10
Period start 2018-12-31
Period end 2021-12-30
Number of days 758
Portfolio weights Equal

Table 4: Overview simula-
tion parameters

Setting Value

VaR Level 99%
One-sided Left
Ewma Coefficient (λ) 0.98
Lookback Period min(500,Avlb)

Table 5: Parameters of
VaR backtest

Figure 4 shows the backtesting results over the period. Firstly, we observe that both the
PCA-FHS and SD-FHS achieve the same breach rates as the Portfolio-FHS, meaning that
both simulations provide accurate VaR levels. From the OSS graph, we see that the SD-FHS
provides a more stable conditional covariance matrix, although the algorithm is not able to
fully diagonalize during the COVID spike. Nevertheless, the overall OSS is lower than for the
PCA, meaning that we can expect more accurate correlation filtering in this case. Although the
differences are small, we also notice that the SD-FHS VaR line tracks the Portfolio FHS VaR
line better than the PCA-FHS, which exhibits minor VaR spikes during some of the correlation
spikes, leading to unnecessarily high margins. The sum of squared differences of the VaR to
the benchmark VaR is shown in Section 3.2.
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Figure 4: Both PCA-FHS and SD-FHS track the portfolio FHS-VaR better than the
classical FHS. The average OSS is more stable for the SD-FHS, which provides better
VaR levels during the small correlation spikes leading up to the COVID Crash.

Method Portfolio FHS SD FHS PCA FHS Classical FHS

VaR Level SSE 0 0.0812 0.11548 0.3845

Table 6: Sum squared difference to Portfolio FHS

4. Conclusion

Filtered Historical Simulation is a widely used technique for estimating risk measures such
as Value-at-Risk and Expected Shortfall of asset portfolios. It is commonly employed by central
counterparty clearing houses to set initial margin requirements and by risk managers to assess
market risk. While FHS effectively adjusts past returns to current volatility levels, it falls short
in accounting for sudden shifts in correlation structures, which can lead to underestimating
portfolio risk during periods of market turbulence, when correlations tend to increase. Con-
versely, during stable market conditions, FHS may overestimate risk, resulting in excessively
high margins.

To address the limitations of classical FHS, orthogonal FHS-type filtering techniques pro-
vide a robust solution by transforming correlated returns into uncorrelated independent factors.
This approach inherently adjusts for correlations, offering a more accurate risk assessment. We
presented the theoretical underpinnings of this method, demonstrating that extracting orthog-
onal factors yields risk measures equivalent to those from the benchmark Portfolio FHS. The
main challenge lies in accurately extracting these orthogonal factors from time series data.
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We propose using a simultaneous matrix diagonalization algorithm, as outlined by Cardoso
and Souloumiac [5], to achieve this. The resulting simulation procedure, termed SD-FHS, has
been shown to be effective in both simulated and real-world datasets, offering a significant
improvement over the classical FHS approach.
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Appendix A. List of Portfolio Constituents Empirical Section

Ticker

ALGN
ALL
ALLE
AMAT
AMCR
AMD
AME
AMGN
AMP
AMT
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